

Hari C. Mantripragada and Edward S. Rubin Department of Engineering and Public Policy Carnegie Mellon University Pittsburgh, PA

GHGT-12

October 6th 2014, Austin TX

Outline of Talk Background Calcium looping process Performance model Cost model Case study Conclusions

Techno-economic model

Performance model

- Calculates capture system mass and energy flows for specified operating conditions and a specified CO₂ removal efficiency
- Calculates the overall performance, emissions and resource requirements of the entire power plant

Cost model

Calculates capital and O&M costs of the capture unit

10

 Calculates capital cost, O&M costs and levelized cost of electricity (LCOE) for the entire power plant

Cost elements modeled Indirect capital costs Direct capital costs General facilities Carbonator Eng'g. & home office fees Calciner Process contingency Air separation unit Project contingency Heat recovery system Pre-production costs Steam turbines Royalty fees Solids handling Interest during construction Blowers, etc. O&M costs □ CO₂ purification unit CO₂ compressors Coal

All costs reported in constant 2012 US dollars

- Fresh limestone Waste disposal
- Labor costs
- Maintenance costs

17

Typical cost trend of a new technology

Assumptions for base plant (no CCS)

(SCPC unit; meets or exceeds current U.S. standards for new plants)

Base plant parameter	Value
Gross power output (MW)	650
Net plant power output (MW)	608
Capacity factor (levelized) (%)	75
Coal HHV (MJ/kg) (Appalachian medium sulfur)	30.5
Coal cost (\$/tonne)	49.87
Flue gas CO_2 content at carbonator inlet (% vol)	11.91
Flue gas SO_2 content at carbonator inlet (% vol)	0.024

Base plant plus CaL-based CO ₂ (with pipeline transport and geological storage of	capture of CO ₂)
CaL-based CO ₂ capture process parameter	Value
CO ₂ removal efficiency (%)	90
Limestone purity (%)	92.4
Carbonation conversion (f _{carb})	0.8
Calciner conversion (f _{calc})	0.95
Make-up sorbent to recirculating sorbent ratio (mol/mol)	0.025*
Sorbent cost (\$/tonne)	25.8
Solid waste disposal cost (\$/tonne)	14.7
CO ₂ transport and storage cost (\$/tonne)	3.2
* Equivalent to 1kg limestone per kg of coal feed to the calciner	

Case study performance results

		CaL
Gross plant power output (MW)	650	1273
- Gross power from base plant (MW)	650	650
- Auxiliary power from CaL unit (MW)	-	623
Net plant power output (MW)	608	1056
Net plant efficiency (%HHV)	39	36
Coal flow rate for base plant (tonnes/hr)	183	183
Coal flow rate for calciner (tonnes/hr)	-	162
CO ₂ captured (tonnes/hr)	-	1029

Parameter	No CCS	CaL (FOAK
Net plant power output (MW)	608	1,056
Total plant capital cost (\$/kW-net)	1,970	5,374
Levelized cost of electricity (\$/MWh)	61	141
Cost of CO ₂ captured (\$/tonne)	-	83
Cost of CO ₂ avoided (\$/tonne) *		105
*Based on reference plant CO $_2$ flow rate of 0.82kg/kWh and LCOE of \$ Includes cost of transport and storage. All costs are in constant 2012 L	59/MWh; JS dollars	

Case study cost results:
FOAK vs. NOAK cost assumptions

Parameter	CaL (FOAK)	CaL (NOAK)
Net plant power output (MW)	1,056	1,056
CaL system total capital reqm't. (\$/kW-net)	4,088	3,089
Total plant capital cost (\$/kW-net)	5,374	4,231
Levelized cost of electricity (\$/MWh)	141	103
Cost of CO ₂ captured (\$/tonne)	83	44
Cost of CO ₂ avoided (\$/tonne)	105	56
*Based on reference plant $\rm CO_2$ flow rate of 0.82kg/kWh and LCOE of \$59/MV Includes cost of transport and storage. All costs are in constant 2012 US dol	Vh; Iars	
To achieve N th of a kind cost you have to	build N pl	ants!
To achieve N th of a kind cost you have to	build N pl	ants!

Conclusions

- Power plant with CaL-based CO₂ capture has a lower energy penalty compared to current postcombustion CO₂ capture processes
- Based on preliminary case study assumptions, efforts are needed to reduce the capital cost of the CaL process for it to better compete with alternative post-combustion processes

